文章编号: 0258-7025(2010)Supplement 1-0043-04

# 小体积小束散角灯抽运电光调 Q Nd:Ce:YAG 激光器

高恒彭绪金陶炜杨闯童勇

(西南技术物理研究所,四川成都 610041)

摘要 通过合理设计谐振腔参数,并采用内置扩束透镜组,获得了一种小体积高效率、液冷和电光调 Q 激光器。激 光器电光转换效率为1.4%,输出单脉冲能量大于100 mJ。激光器腔长250 mm,输出脉冲宽度为10~15 ns,激光 器5 Hz 工作时激光远场束散角为1.6 mrad,20 Hz 为1.8 mrad,光斑直径为5 mm,能量稳定度小于5%。 关键词 激光器;电光调 Q;扩束透镜组;远场发散角

中图分类号 TN248.1 文献标识码 A doi: 10.3788/CJL201037s1.0043

## Lamp-Pumped Electro-Optical Q-Switched Nd:Ce:YAG Laser with Small Size and Small Beam Divergence Angle

Gao Heng Peng Xujin Tao Wei Yang Chuang Tong Yong

(South West Institute of Technical Physics, Chengdu, Sichuan 610041, China)

**Abstract** A small-size, high-efficiency, liquid-cooled, electro-optic *Q*-switched laser is obtained, by using the expanded beam lens group with rational designed resonator parameters. The electro-optical conversion efficiency of laser is 1.4% and the output energy of single pulse is greater than 100 mJ. The cavity length is 250 mm with the laser pulse width of  $10 \sim 15$  ns. The beam divergence angle is 1.6 mrad when the laser works on 5 Hz, while 1.8 mrad working on 20 Hz. The output laser beam diameter is 5 mm and the energy fluctuation is less than 5%. **Key words** lasers; electro-optic *Q*-switch; expanded beam lens group; far-field divergence angle

#### 1 引 言

灯抽运液冷 YAG 激光器因其良好的稳定性, 在各个方面有广泛的应用,尤其在军事方面应用于 激光测距/照射器。在用于军用激光照射器的激光 器设计中,激光器的脉宽、束散角、能量和能量稳定 性等参数相互制约。合理地设计谐振腔参数,采用 合理地抽运方式、合适的聚光腔尤为重要。本文通 过对调 Q 激光器输出效率的分析,并合理地设计腔 参数,完成了一种小体积、小束散角和灯抽运电光调 Q Nd:Ce:YAG 激光器。

### 2 设计方案及实验装置

2.1 激光器设计思路 激光器采用折返光路,减小了激光器整体的体 积。谐振腔采用凹凸非稳腔,在激光器振荡级与放 大级之间放置扩束透镜组,激光器谐振腔长度为 250 mm。光路原理简图如图 1 所示。主要包括全 反镜 M1,调 Q 晶体 C1,偏振片 M2,角镜 M3,转轴 棱镜 M6,扩束负透镜 M5,输出镜 M4,振荡级晶体 C2,扩束正透镜 M7,氙灯 D,放大级晶体 C3 和输出 窗口片 M8。

#### 2.2 振荡级谐振腔设计

对激光测距仪而言,为了增大可测距离,必须提高发射功率,增大接收孔径和接收、发射光学系统的透射率,减小发射光束的束散角,提高接收灵敏度<sup>[1]</sup>。

而对于激光器本身,只能提高发射功率,减小发 射光束的束散角。且束散角θ对测距能力影响更

收稿日期: 2009-12-10; 收到修改稿日期: 2010-02-26

**作者简介:**高 恒(1978—),男,硕士,工程师,主要从事固体激光器的研究与开发等方面的研究。 E-mail: gaoheng780716@163.com

光



图 1 激光器原理图 Fig. 1 Schematic diagram of laser

大。因此,在测距/指示用的激光器设计时,应尽量 减小束散角<sup>[2]</sup>。

激光器谐振腔采用凹凸非稳腔,其本身能够实现准直输出,效率较高,激光在振荡级输出后,经过 M5,M7组成的扩束系统扩束整形后通过放大级晶体,然后通过窗口片输出。凹凸非稳腔增大了激光 晶体利用体积,扩束系统对输出激光束散角进一步 压缩。该设计提高了激光器的效率,并减小了激光 束散角。

# 3 影响灯抽运电光调Q激光器效率的因素

在脉冲调 Q 激光器的设计中,激光器的效率至 关重要,影响因素主要有三方面,即激光器的抽运效 率,Q开关延迟时间和脉冲建立时间,调 Q 晶体的 选取<sup>[3]</sup>。

#### 3.1 激光器抽运效率

影响抽运速率的主要因素有 Nd:YAG 晶体的 效率、聚光腔效率和脉冲氙灯发射有用光谱效率。 该激光器选用高效的 Nd:YAG 晶体,聚光腔则采用 漫反射 MgO 石英腔,这种聚光腔抽运均匀,性能稳 定,灯和棒能够方便地同时冷却。在脉冲氙灯的发 射光谱与 Nd:YAG 的吸收光谱的匹配问题上,主要 通过调整脉冲氙灯的放电波形,使抽运速率处于最 佳状态。

#### 3.2 Q开关延迟时间和脉冲建立时间<sup>[4]</sup>

激光晶体 Nd: YAG 上能级粒子平均寿命为 230~250 ns。图 2 为 Q 开关过程中, 氙灯放电和 Q 开关触发信号之间的时间关系。上能级反转粒子 数密度 n 随氙灯放电开始增加,在某一时刻达到最 大值 n<sub>0</sub>,此时为 t<sub>0</sub>,如图 2(a),(b)所示。由于非辐 射跃迁和自发辐射跃迁的影响,在 t<sub>0</sub> 以后 n 值将逐 渐下降。另外由于 Nd: YAG 晶体和调 Q 晶体消光 比的影响,Q 开关不可能关得很严,在上能级反转粒 子数密度聚积到足够大时,将会有微弱的激光振荡 形成,从而消耗一定的上能级粒子。因此,需要在反 转粒子数积累到一定程度时及时打开光 Q 开关,提 高光子能量的利用率,得到最佳的动态输出效果,如 图 2(c)所示。

37 卷



#### 图 2 Q 开关过程中, 氙灯放电与 Q 开关触发信号的 时间关系

Fig. 2 Time relationship between discharge of xenon lamp and the starting pulse of *Q*-switch

图 3 为 Q 开关过程中  $\Delta n$ , $V_{crystal}$ , $\Phi$ , $\delta$ 等的时间 对应关系曲线,其中  $\Delta n$  为反转粒子数密度, $V_{crystal}$  为 Q 开关晶体高压, $\Phi$  为腔内光子数密度, $\delta$  为腔内损 耗。Q 开关的开关时间  $\Delta t = t_s - t_0$ 。若  $\Delta t$  过长, 腔内 高损耗状态将会拖得很长,光子密度增长不够快, 导致受激辐射不足,光子密度大大下降。因此在设 计过程中,需要设定一个适当的开关时间  $\Delta t$ ,以使 光脉冲建立时间处于一个最佳值  $t_0$ ,提高光子能量 的利用率。



图 3 Q 开关过程中,反转粒子数密度及 Q 开关晶体电压 (a),腔内光子数密度(b)和损耗(c)的时间对应关系曲线

Fig. 3 Inversed population voltage on EO crystal (a), photon density (b) and resonator losses (c) as a function of time in Q-switched system

#### 3.3 LiNbO<sub>3</sub> 电光 Q 开关参数的选择

激光器采用带偏振器的电光(EO)调 Q 激光器,使用的电光晶体采用斜块铌酸锂(LiNbO<sub>3</sub>)晶体。根据谐振腔参数,适当设计电光晶体的尺寸及电光晶体相对于光轴的角度、调 Q 高压的脉冲宽度和前沿等参数,提高了电光 Q 开关的抗破坏阈值和动态转换效率,激光器动静比达到 1.2。

4 腔外压缩设计

远场束散角为

$$\theta = \frac{2\lambda}{\pi w_0},\tag{1}$$

式中 $w_{\scriptscriptstyle 0}=\sqrt{z_{\scriptscriptstyle 0}\lambda/\pi}$ , $z_{\scriptscriptstyle 0}=z\,\sqrt{(R/z)-1}$ , $w_{\scriptscriptstyle 0}$ 为光

腰,R为透镜曲率半径。

光束的远场束散角定义了一个给定光束直径最 好的准直效果,说明了光束的零束散角是不可能达 到的,因为零束散角对应着无穷大的光束直径。但 是(1)式也表明了改善束散的可能性。

考虑一个已经准直的光束,束散角为θ,光腰为 w<sub>0</sub>,如果光束直径增大,远场束散角将会减小。这 就是扩大光束的优点。

为了实现这一改善,将对准振荡级输出激光进 行扩束。设计采用伽利略扩束镜,其包括一个输入 的凹透镜和一个输出的凸透镜。输入镜将一个虚焦 距光束传输到输出镜。一般的扩束镜都用该原理制 造,因为它简单、体积小。且尽可能设计为小的球面 相差,低的波前变形和消色差。它的局限性在于不 能容纳空间滤波或者进行大倍率的扩束。

#### 5 实验结果

实验中使用 EPM2000 能量计来测量输出激光的能量,使用 TDS500MB 存储示波器测量脉冲宽度,套孔法测量激光远场束散角。

#### 5.1 常温及高温能量稳定性

激光器在充电电容为 30 μF,注入电压为 700 V, 重复频率为 20 Hz 时,激光能量为 110 mJ,电光效率 为 1.4%。对激光器能量稳定性进行测试,一个循环 为 30 s,每两个循环间隔 10 s。

在室温(25 ℃)下工作 8 个循环的能量如图 4 所示。通过计算得知激光能量稳定性在 5%以内 (所用能量计探头衰减系数为 6)。

在高温(65 ℃)下工作 8 个循环的能量如图 5 所示。通过计算得知激光能量稳定性在 5%以内。





Fig. 4 Energy curve at room temperature





#### 5.2 激光脉冲宽度和束散角测量

使用 TDS500MB 存储示波器测得激光器脉冲 宽度为 10~15 ns。使用套孔法测得激光远场束散 角在 5 Hz 时为 1.6 mrad,20 Hz 时为 1.8 mrad。

6 结 论

采用凹凸腔设计的激光器有效地提高了激光器 效率,减小了激光器远场束散角。当加入了扩束镜 以后,激光束散角得到进一步的压缩。激光器电光 转换效率为1.4%,输出单脉冲能量大于100 mJ。 激光器腔长250 mm,输出脉冲宽度为10~15 ns,激 光器5 Hz工作时激光远场束散角为1.6 mrad, 20 Hz时为1.8 mrad,光斑直径为5 mm,能量稳定 度小于5%,完全满足远距离激光测距/指示需求。

#### 参考文献

1 Tan Xianyu. Analyses of ranging equation and ranging performance for pulsed laser rangefinders [J]. Laser & Optoelectronics Progress, 1998, **35**(3): 22~28

谭显裕.脉冲激光测距仪测距方程和测距性能分析[J].激光与 光电子学进展,1998,**35**(3):22~28

2 Zhang Chengquan. Foreign Military Laser Equipment Instrumental Handbook [M]. Beijing: Weapons Industry Press, 1989

张承铨. 国外军用激光仪器手册 [M]. 北京: 兵器工业出版社, 1989

3 W. Koechner. Solid State Laser Engineering [M]. Beijing: Science Press, 2002

W. 克希耐尔. 固体激光工程[M]. 北京:科学出版社, 2002

4 Li Zhongjian, Hu Wenhua. A compact high-efficiency air-cooled Q-switched Nd:Ce: YAG laser [J]. J. Optoelectronics • Lasers, 2001, 12(4): 382~384

李忠建,胡文华. 高效风冷小型化电光调 Q-Nd:Ce:YAG 激光器 [J]. 光电子·激光,2001,12(4):382~384